Advanced SUSE Linux Enterprise Server Administration (Course 3038)

> Chapter 8 Perform a Health Check and Performance Tuning

Objectives

- Find Performance Bottlenecks
- Reduce System and Memory Load
- Optimize the Storage System
- Tune the Network Performance

Find Performance Bottlenecks

- Questions that can help you to find the performance bottleneck
 - What kind of server is affected?
 - What are the exact symptoms of a problem?
 - Does the problem occur at specific times of the day or the week?
 - When and how did the problem start?
 - Who is experiencing the problems?
 - Can the problem be reproduced?

Find Performance Bottlenecks (continued)

- Objectives
 - Analyze Processes and Processor Utilization
 - Analyze Memory Utilization and Performance
 - Analyze Storage Performance
 - Analyze Network Utilization and Performance

Analyze Processes and Processor Utilization

- You should look at the processor utilization
- Measure processor utilization using the system load
 Use commands such as top or uptime
- Linux is a multiprocessing operating system
 - CPU can handle one process at a time
 - Kernel puts the running processes into a queue
 - Load value
 - Average number of waiting processes in the process queue in a specific amount of time
- A process does not always require CPU time
 CPU waits for I/O processes

Analyze Processes and Processor Utilization (continued)

Table 8-1

Program	Description
top	Displays a sorted list of applications and the three val- ues for the average load values in the last 1, 5, and 15 minutes. When you find that your system has a high load value, top can also be very helpful to find out which application is actually producing it.
uptime	uptime can also be used to display the system load in the last 1, 5, and 15 minutes.
mpstat	On multiprocessor systems, mpstat can be used to display the utilization of each installed processor.
KDE System Guard	KDE System Guard displays a graphical representation of the system load.

Analyze Memory Utilization and Performance

- Applications have to be loaded into memory
 Before they can be executed by the CPU
- Memory is controlled by the Memory Management system of the Linux kernel
- Types of memory
 - Physical memory
 - Swap memory
- Command free
 - Displays utilization of physical and swap memory

Analyze Memory Utilization and Performance (continued)

• Command free output example

	total	used	free	shared	buffers	cached
Mem:	516204	502080	14124	0	29356	154920
-/+ buf	fers/cache:	317804	198400			
Swap:	1036152	143320	892832			

- Performance of the whole system is affected
 - When a lot of swap space has to be used
- Use top command to find programs that use a lot of memory
- Command vmstat
 - Displays the activity of swap memory

Analyze Memory Utilization and Performance (continued)

Command vmstat output example

pro	CS	memory			-sw	ap-	i(o	system-			cpu			
r	b	swpd	free	buff	cache	si	so	bi	bo	in	CS	us	sy	id	wa
0	0	4	6728	34464	244744	0	0	447	42	1216	384	15	3	74	7
0	0	4	6728	34464	244744	0	0	0	0	1186	222	1	1	98	0
0	0	4	6760	34464	244744	0	0	0	0	1282	299	3	0	97	0
0	0	4	6696	34532	244744	0	0	0	68	1139	147	1	1	97	1
0	0	4	6696	34532	244744	0	0	0	0	1105	123	0	0	98	0
0	0	4	6696	34532	244744	0	0	0	0	1117	131	0	0	98	0

Analyze Memory Utilization and Performance (continued)

Table 8-2

Program	Description
free	Displays the current utilization of the physical and
	swap memory.
vmstat	Monitors the activity of swap memory and can also be
	used to display other system parameters.
KDE System Guard	Offers the capability to display memory usage.
	Choose the signal plotter visualization to follow the
	memory usage over a period of time.

Analyze Storage Performance

- Can be an issue
 - On systems that face heavy hard disk utilization
- Discard problems with a too-high system load
 - Or a lack of physical memory
- System where performance problems are caused by the disk subsystem usually shows
 - Relatively low network and CPU utilization
 - High activity of the installed disks
 - That is not caused by memory paging or swapping

- Command vmstat
 - Displays the activity of the disk subsystem
- Example: almost no disk operations

pro	CS		mem	ory		swa	ap	i	o	sy	stem-		(cpu-	
r	b	swpd	free	buff	cache	si	so	bi	bo	in	CS	us	sy	id	wa
0	0	4	6728	34464	244744	0	0	447	42	1216	384	15	3	74	7
0	0	4	6728	34464	244744	0	0	0	0	1186	222	1	1	98	0
0	0	4	6760	34464	244744	0	0	0	0	1282	299	3	0	97	0
0	0	4	6696	34532	244744	0	0	0	68	1139	147	1	1	97	1
0	0	4	6696	34532	244744	0	0	0	0	1105	123	0	0	100	0
0	0	4	6696	34532	244744	0	0	0	0	1117	131	0	0	100	0

Example: high utilization of the disk subsystem

pro	CS		mem	ory		sw	ap	j	Lo	sys	tem		C]	pu-·	
r	b	swpd	free	buff	cache	si	so	bi	bo	in	cs	us	sy	iđ	wa
1	2	52	5680	6100	221688	0	0	0	36160	1273	1655	42	58	0	0
0	3	304	6896	1232	225672	0	256	4	22160	1586	1127	31	40	0	28
1	2	304	5936	1252	226540	0	0	0	28400	1487	460	15	23	0	62
1	0	304	7792	1276	224404	0	0	0	43328	1342	408	20	29	0	51
1	2	304	6256	1624	224648	0	0	0	88260	1205	439	24	42	0	35
0	2	476	6648	1672	224112	0	172	4	45452	1149	8015	29	54	0	17
0	2	476	7672	1720	223184	0	0	8	36940	1168	8310	23	44	0	33

- Command iostat
 - Determines the average time a program has to wait for data from the disk
 - Syntax
 - iostat -x 1 /dev/hda

Example: low I/O load

avg-cpu:	%user %nice 8.08 0.04	-	
Device:	rrqm/s wrqm/s		rkB/s wkB/s avgrq-sz avgqu-sz await svotm %util
hda	3.18 17.90	3.37 1.32 146.73 153.78	73.36 76.89 64.11 0.25 53.50 4.57 2.14
avg-cpu:	%user %nice	%sys %iowait %idle	
	4.90 0.00	0.98 0.00 94.12	
Device:	rrqm/s wrqm/s	r/s w/s rsec/s wsec/s	rkB/s wkB/s avgrg-sz avggu-sz await svetm %util
			, , , , , , , , , , , , , , , , , , , ,
hda	0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00
	<pre>%user %nice</pre>	%sys %iowait %idle	
avg-cpu:		-	
	5.05 0.00	0.00 0.00 94.95	
Develope			
Device:	rrqm/s wrqm/s		rkB/s wkB/s avgrq-sz avgqu-sz await svctm %util
hda	0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00

Example: high I/O load

avg-cpu: %user %nice %sys %iowait %idle 26,00 0,00 45,00 29,00 0,00

Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s rkB/s wkB/s avgrq-sz avgqu-sz await svctm %util hda 0,00 9198,00 4,00 39,00 32,00 73872,00 16,00 36936,00 1718,70 103,83 1430,33 23,28 100,10

avg-cpu: %user %nice %sys %iowait %idle 20,79 0,00 39,60 39,60 0,00

Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s rkB/s wkB/s avgrq-sz avgqu-sz await svctm %util hda 0,00 9105,94 0,00 44,55 0,00 73140,59 0,00 36570,30 1641,60 99,97 2441,89 22,24 99,11

avg-cpu: %user %nice %sys %iowait %idle 26,26 0,00 45,45 28,28 0,00

Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s rkB/s wkB/s avgrq-sz avgqu-sz await svctm %util hda 0,00 10313,13 0,00 41,41 0,00 82828,28 0,00 41414,14 2000,00 93,90 2529,10 24,41 101,11

avg-cpu: %user %nice %sys %iowait %idle 24,00 0,00 48,00 28,00 0,00

Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s rkB/s wkB/s avgrq-sz avgqu-sz await svctm %util hda 0,00 9293,00 0,00 41,00 0,00 74640,00 0,00 37320,00 1820,49 92,70 2447,00 24,41 100,10

Table 8-3

Command	Description
vmstat	Monitors the amount of data that is read from or written to disk.
iostat	Displays how long I/O requests from applications take.

Analyze Network Utilization and Performance

- Network connection can be a performance bottleneck
- Monitor network with KDE System Guard
- Types of sensors
 - Receiver
 - Transmitter
- Network services can interfere with performance
 - DNS
 - Proxy
 - NFS

Analyze Network Utilization and Performance (continued)

D 🖻 🗎 🗞	D. Die	1040								
Sensor Browser	Sensor Ty		rocess Ta	able						
		Name	PID	User%	System%	Nice	VmSize	VmRss	Login	Comman
		👘 aio/0	10	0.00	0.00	-10	0	12	roat	
		🖸 artsd	3727	0.00	0.00	0	7,692	4,824	geeko	/opt/kde3
		음 cron	3563	0.00	0.00	0	1,388	588	root	/usr/sbin/
		요 cupsd	3296	0.00	0.00	0	7,656	3,388	lp	/usr/sbin/
		⊡ <u>⊺</u> ree	All	Process	es ¥]	ØB	efresh] [<u>R</u> ill

Analyze Network Utilization and Performance (continued)

Sensor	Description
Data/Packets	The amount of data or packets sent or received by the interface. If performance problems occur during a high network load, the network connection or type might be too slow for the purpose of the server.
Collisions	This sensor is only available for the transmitter. Colli- sions usually occur more frequently when too many hosts share the same Ethernet domain (such as hosts that are connected with a hub and instead of a switch). Too many collisions can have a negative impact on the overall network performance.
Dropped Packets	 This sensor displays the number of packets that are either dropped when they are received by the host or by other network components like routers on their way to the destination. Too many dropped packets can have a bad influence on the network performance. The following are some reasons for dropped packets: Network components are running at a different speed. For example, the server runs at 100 Mbps, but the router at only 10 Mbps. The network or system load of a server is too high to handle all received network packets properly. A network component runs with a misconfigured packet filter that drops network packets.
Errors	An error occurs when a packet is transmitted but the content of the packet is corrupted. This can be caused by a bad physical connection or faulty network adapters.

Analyze Network Utilization and Performance (continued)

Table 8-5

Program	Description
KDE System Guard	Displays network utilization and different kinds of
	transmission errors.
Traffic-vis	Analyzes network connections to specific hosts. You
	need to install the package traffic-vis in order to use
	this tool.
ip	Displays the status of an interface as well as transmis-
	sion errors.

Exercise 8-1 Analyze System Performance

- In this exercise, you will do the following:
 - Part I: Analyze Processor Utilization
 - Part II: Analyze Memory Utilization
 - Part III: Analyze Hard Disk Utilization
 - Part IV: Analyze Network Utilization

Reduce System and Memory Load

- Objectives
 - Analyze CPU Intensive Applications
 - Run Only Required Software
 - Keep Your Software Up To Date
 - Optimize Swap Partitions
 - Change Hardware Components

Analyze CPU Intensive Applications

- High system and memory load
 - Often caused by single application
- top utility
 - Used to find out which process uses the most resources on your system
- Sometimes a process uses a lot of system resources
 - Because of a faulty implementation
 - Determine this by restarting the process

Run Only Required Software

- Run a server system without X
 - Saves memory and CPU utilization
 - Switch to runlevel 3 manually
 - init 3
 - Set the default runlevel to 3 in file /etc/initab
 - id:3:initdefault:
- Reduce the number of daemon processes
 - Get an overview of the current service configuration
 - chkconfig –I
 - Remove a service from the init process
 - chkconfig apache2 off

Run Only Required Software (continued)

- Reduce the number of daemon processes (continued)
 - Re-enable a service
 - chkconfig apache2 3
 - Stop a running instance of apache2
 - rcapache2 stop

Keep Your Software Up to Date

- Reasons
 - Security issues caused by outdated software
 - Up to date software can improve performance
- Implementation errors
 - Can lead to a high utilization of system resources

Optimize Swap Partitions

- On a system with a lot of swapping
 Add more main memory to enhance performance
- Make sure you have enough available swap space
 Old rule: you should have double the size of the physical memory as swap space
- Key to speeding up the swap space
 Spread it over several disks
- Every swap partition has an entry in the file /etc/fstab
 - Priority 1 means kernel can use partitions in parallel
 - Drives should run at the same speed

Change Hardware Components

- Upgrade the CPU
 - If your system shows a high system load
 - But all other parameters look normal
 - Consider the following before upgrading the CPU
 - Are there significantly faster CPUs available?
 - Are the rest of the system components fast enough for the new CPU?
 - Is the system going to be replaced in the near future?
 - Are other, faster systems available in your organization that could be used instead of the current system?

Change Hardware Components (continued)

- Upgrade the memory
 - Usually means installing more physical memory
 - How much additional memory you should install
 - Look at the amount of swap space used by the system
 When the performance problems occur
 - Compare the cost of a memory upgrade
 - With the cost of installing a new system
 - Additional physical memory means more swap space
 - More than 1 GB of swap space does not increase performance significantly

Exercise 8-2 Reduce Resource Utilization

• In this exercise, you will practice reducing resource utilization

Optimize the Storage System

- Objectives
 - Configure IDE Drives with hdparm
 - Tune Kernel Parameters
 - Tune File System Access
 - Change Hardware Components

Configure IDE Drives with hdparm

- Tool hdparm
 - Tunes some settings of IDE hard drives
 - Syntax
 - hdparm -i /dev/had
- Direct Memory Access (DMA)
 - Data from a disk can be written directly to the main memory of a system without CPU utilization
- Check the current status of the DMA
 - hdparm -d /dev/had
- Enable DMA
 - hdparm -d 1 /dev/hda

Configure IDE Drives with hdparm (continued)

Table 8-6

Parameter	Description
-c 1	Enables 32-bit transfers of disk data over the PCI bus.
-u1	A setting of 1 permits the driver to unmask other interrupts dur- ing processing of a disk interrupt, which greatly improves Linux's responsiveness and eliminates serial port overrun errors.
-X value	Configures the drive to use a specific transfer mode.
-A 1	Enables read-ahead, which increases performance when dealing with large, sequential file operations.

Configure IDE Drives with hdparm (continued)

- Measure the transfer performance of a hard disk
 hdparm -t /dev/had
- All changes that are made with hdparm
 Are active only until the next reboot
- Make changes permanent by adding them to /etc/init.d/boot.local

Tune Kernel Parameters

- Tune the IO scheduler
 - Collects requests from the processes and hands them over to the hardware drivers
 - Configure scheduler parameter in file
 - /sys/block/device/queue/iosched/quantum
 - Use echo 6 > /sys/block/hda/queue/iosched/quantum
 - Tradeoff between data throughput and latency
 - Lower value = Shorter latency but lower data throughput
 - Higher value = Longer latency but higher data throughput

Tune Kernel Parameters (continued)

- Change the read-ahead parameter
 - Read-ahead basically means
 - More data from a file is read than requested by an application
 - Set the read-ahead parameter in the file
 - /sys/block/device/queue/read_ahead_kb
 - Use echo 256 > /sys/block/device/queue/read_ahead_kb
 - Larger values can lead to a better overall throughput
 - With the drawback of a higher latency

Tune Kernel Parameters (continued)

- Change the swappiness parameter
 - Affects both the memory and the I/O performance
 - Determines when a system starts to swap out data to the disk
 - Can be set in the file /proc/sys/vm/swappiness
 - Use echo 40 > /proc/sys/vm/swappiness

Tune File System Access

- Disable atime update
 - For every file Linux stores the following information:
 - When the file was created (ctime)
 - When the file was modified the last time (mtime)
 - When the file was accessed the last time (atime)
 - Kernel needs to update the atime attribute
 - Every time a file is accessed
 - If the atime attribute is not important to you
 - You can mount a data partition with the noatime option

Tune File System Access (continued)

- Implement File System Dependent Tuning Options
 - Mount a Reiser File System with the notail option
 - Syntax
 - /dev/hda2 /data reiserfs notail 00
 - Configure the journaling mode of Ext3
 - Modes
 - data=journal
 - data=ordered
 - data=writeback
 - Syntax

/dev/hda2 /data ext3 data=writeback 0 0 Advanced SUSE Linux Enterprise Server Administration (Course 3038)

Change Hardware Components

- From a performance perspective
 - A true SCSI hardware RAID system might be the best choice
- Compare the costs and the estimated advantages of an upgrade
 - With the purchase of a new system
- Hardware upgrade always has the risk of creating a new performance bottleneck

Exercise 8-3 Tune an IDE Hard Drive with hdparm

• In this exercise, you will tune your IDE hard drive.

Tune the Network Performance

- Objectives
 - Change Kernel Network Parameters
 - Change Your Network Environment

Change Kernel Network Parameters

- Parameters can be set with the sysctl command
 - You have to be the root user
 - The most important command line parameter is -w
- You can also access the kernel parameters from the proc file system
 - Which is mounted under /proc

Change Kernel Network Parameters (continued)

Table 8-7

sysctl command	Effect
sysctl -w net.ipv4.tcp_tw_reuse=1 sysctl -w net.ipv4.tcp_tw_recycle=1	When a TCP connection has been closed, the corresponding socket stays in the TIME-WAIT status for a while. Setting these two parameters enables the reuse of these sockets for new connections. On a system with many TCP connections, this can reduce the number of open connec- tions and the utilization of sys- tem resources.

Change Kernel Network Parameters (continued)

Table 8-7	(continued)
-----------	-------------

sysctl command	Effect
sysctl -w net.ipv4.tcp_keepalive_time=900	TCP connections are usually kept alive for a specific amount of time. After this time period, a system probes to see if the connection partner is still reachable. If not, the connec- tion is closed and the used resources are freed. The default time for SLES 9 is 1800 seconds. By reducing this time, you can reduce the num- ber of opened but unused connections.

Change Your Network Environment

- Suggestions for improving network performance
 - Monitor all other system components
 - Limit the collision domain
 - Check cable quality
 - Check both sides of a connection
 - Change network adapters
 - Upgrade to a faster network type

Summary

- Regular monitoring of your SLES system
 Key to identifying bottlenecks
- Monitor the system load and CPU utilization
- Processes that use more physical memory than they need (called a memory leak)
 - Lead to reduced performance
- Disk subsystem may be a bottleneck
- Malfunctioning, slow, or misconfigured network interfaces can cause performance bottlenecks

Summary (continued)

- DNS, Proxy, and NFS servers on your network
 - Can indirectly lead to reduced network performance
- Common solutions to most performance problems
 - Restarting CPU-intensive processes
 - Running SLES without X
 - Reducing the number of running daemon processes
 - Obtaining software updates
 - Using multiple swap partitions
 - Upgrading the CPU
 - Increasing the swap
 - Upgrading the system memory

Advanced SUSE Linux Enterprise Server Administration (Course 3038)

Summary (continued)

- Many disk-related performance problems
 Can be solved by changing a kernel parameter
- Can disable atime updates for mounted file systems
 And configure ext3 journaling modes
- If software-based solutions do not lead to improved disk performance
 - You will need to upgrade your disk hardware
- Many network-related problems
 - May be solved by changing a kernel parameter in the /proc directory